DiBiG
ICBR BioinformaticsPowered by Actor, v1.0

RNAseq - Alignment and differential expression analysis

Title: GE6680
Project: (none)
Started on: 6/12/2023 12:09:01
Hostname: login1.ufhpc
Run directory: /blue/licht/runs/LeleLabCollab/GE6680/GE6680
Configuration GE6680.conf
Table of contents:
  1. Input data
  2. Trimming and quality control
  3. Alignment to transcriptome
  4. Genome coverage
  5. Expression analysis - quantification
  6. Differential expression - protein-coding genes
  7. Differential expression - all genes
  8. Differential expression - isoform level
  9. Differential expression - combined files
  10. Alternative splicing analysis
  11. MultiQC report
  12. UCSC hub
  13. Methods summary
1. Input data
The following table summarizes the samples, conditions, and contrasts in this analysis. A readset is either a single fastq file or a pair of fastq files (for paired-end sequencing).

CategoryData
Summary of input data
Experimental conditions:None0_NuMUG, dNesp_IAA0_NuMUG, dNesp_IAA2_NuMUG, dNesp_IAA8_NuMUG, None24_NuMUG, None_DMSO_NuMUG, IAA24_NuMUG, dNesp_DMSO_NuMUG, dNesp_IAA24_NuMUG
Contrasts:dNesp_IAA0_NuMUG vs. IAA24_NuMUG, dNesp_IAA2_NuMUG vs. IAA24_NuMUG, dNesp_IAA8_NuMUG vs. IAA24_NuMUG, dNesp_IAA24_NuMUG vs. IAA24_NuMUG, dNesp_DMSO_NuMUG vs. dNesp_IAA0_NuMUG, None0_NuMUG vs. dNesp_DMSO_NuMUG, None0_NuMUG vs. dNesp_IAA0_NuMUG, dNesp_IAA24_NuMUG vs. dNesp_DMSO_NuMUG, dNesp_IAA24_NuMUG vs. None0_NuMUG, dNesp_IAA2_NuMUG vs. dNesp_IAA0_NuMUG, dNesp_IAA8_NuMUG vs. dNesp_IAA0_NuMUG, dNesp_IAA24_NuMUG vs. dNesp_IAA0_NuMUG
Number of samples27
Sequencing data data
Total number of reads:945,167,613
Average reads per sample:35,006,207
Table 1. Summary of input data



ConditionSampleNumber of reads% Reads
None0_NuMUGNone0_NuMUG_1a30,635,3753.24%
None0_NuMUG_1b33,835,0353.58%
None0_NuMUG_1c38,594,3894.08%
dNesp_IAA0_NuMUGdNesp_IAA0_NuMUG_2a43,320,4964.58%
dNesp_IAA0_NuMUG_2b30,802,9543.26%
dNesp_IAA0_NuMUG_2c36,897,2593.90%
dNesp_IAA2_NuMUGdNesp_IAA2_NuMUG_3a45,420,8224.81%
dNesp_IAA2_NuMUG_3b35,075,1643.71%
dNesp_IAA2_NuMUG_3c31,211,0113.30%
dNesp_IAA8_NuMUGdNesp_IAA8_NuMUG_4a41,923,3234.44%
dNesp_IAA8_NuMUG_4b37,992,4514.02%
dNesp_IAA8_NuMUG_4c31,500,1633.33%
None24_NuMUGNone24_NuMUG_5a31,525,8773.34%
None24_NuMUG_5b37,287,4983.95%
None24_NuMUG_5c36,894,8703.90%
None_DMSO_NuMUGNone_DMSO_NuMUG_6a32,270,7583.41%
None_DMSO_NuMUG_6b26,699,0482.82%
None_DMSO_NuMUG_6c35,816,1633.79%
IAA24_NuMUGIAA24_NuMUG_7a46,021,6744.87%
IAA24_NuMUG_7b29,285,5383.10%
IAA24_NuMUG_7c31,814,9553.37%
dNesp_DMSO_NuMUGdNesp_DMSO_NuMUG_8a37,184,6463.93%
dNesp_DMSO_NuMUG_8b32,746,2853.46%
dNesp_DMSO_NuMUG_8c34,877,8593.69%
dNesp_IAA24_NuMUGdNesp_IAA24_NuMUG_9a32,529,4903.44%
dNesp_IAA24_NuMUG_9b28,107,0932.97%
dNesp_IAA24_NuMUG_9c34,897,4173.69%
Table 2. Number of reads in each sample.

2. Trimming and quality control
The input sequences were trimmed using trimmomatic. Quality control was performed before and after trimming using FastQC. The following table provides links to the quality control reports before and after trimming, as well as the number of reads in the trimmed files.

SampleReadsetReads before trimQC before trimReads after trimQC after trim% Retained
None0_NuMUG_1aNone0_NuMUG_1a_r130,635,3751a_S1_L002_R1_001
1a_S1_L002_R2_001
29,327,1611a_S1_L002_R1_001.trim.paired
1a_S1_L002_R2_001.trim.paired
95.73%
None0_NuMUG_1bNone0_NuMUG_1b_r133,835,0351b_S2_L002_R1_001
1b_S2_L002_R2_001
32,452,7651b_S2_L002_R1_001.trim.paired
1b_S2_L002_R2_001.trim.paired
95.91%
None0_NuMUG_1cNone0_NuMUG_1c_r138,594,3891c_S3_L002_R1_001
1c_S3_L002_R2_001
37,089,7501c_S3_L002_R1_001.trim.paired
1c_S3_L002_R2_001.trim.paired
96.10%
dNesp_IAA0_NuMUG_2adNesp_IAA0_NuMUG_2a_r143,320,4962a_S4_L002_R1_001
2a_S4_L002_R2_001
41,246,3062a_S4_L002_R1_001.trim.paired
2a_S4_L002_R2_001.trim.paired
95.21%
dNesp_IAA0_NuMUG_2bdNesp_IAA0_NuMUG_2b_r130,802,9542b_S5_L002_R1_001
2b_S5_L002_R2_001
29,543,8532b_S5_L002_R1_001.trim.paired
2b_S5_L002_R2_001.trim.paired
95.91%
dNesp_IAA0_NuMUG_2cdNesp_IAA0_NuMUG_2c_r136,897,2592c_S6_L002_R1_001
2c_S6_L002_R2_001
35,504,4922c_S6_L002_R1_001.trim.paired
2c_S6_L002_R2_001.trim.paired
96.23%
dNesp_IAA2_NuMUG_3adNesp_IAA2_NuMUG_3a_r145,420,8223a_S7_L002_R1_001
3a_S7_L002_R2_001
43,656,6573a_S7_L002_R1_001.trim.paired
3a_S7_L002_R2_001.trim.paired
96.12%
dNesp_IAA2_NuMUG_3bdNesp_IAA2_NuMUG_3b_r135,075,1643b_S8_L002_R1_001
3b_S8_L002_R2_001
33,656,4923b_S8_L002_R1_001.trim.paired
3b_S8_L002_R2_001.trim.paired
95.96%
dNesp_IAA2_NuMUG_3cdNesp_IAA2_NuMUG_3c_r131,211,0113c_S9_L002_R1_001
3c_S9_L002_R2_001
29,974,2943c_S9_L002_R1_001.trim.paired
3c_S9_L002_R2_001.trim.paired
96.04%
dNesp_IAA8_NuMUG_4adNesp_IAA8_NuMUG_4a_r141,923,3234a_S10_L002_R1_001
4a_S10_L002_R2_001
40,287,9694a_S10_L002_R1_001.trim.paired
4a_S10_L002_R2_001.trim.paired
96.10%
dNesp_IAA8_NuMUG_4bdNesp_IAA8_NuMUG_4b_r137,992,4514b_S11_L002_R1_001
4b_S11_L002_R2_001
36,527,8844b_S11_L002_R1_001.trim.paired
4b_S11_L002_R2_001.trim.paired
96.15%
dNesp_IAA8_NuMUG_4cdNesp_IAA8_NuMUG_4c_r131,500,1634c_S12_L002_R1_001
4c_S12_L002_R2_001
30,088,1104c_S12_L002_R1_001.trim.paired
4c_S12_L002_R2_001.trim.paired
95.52%
None24_NuMUG_5aNone24_NuMUG_5a_r131,525,8775a_S13_L002_R1_001
5a_S13_L002_R2_001
30,041,2965a_S13_L002_R1_001.trim.paired
5a_S13_L002_R2_001.trim.paired
95.29%
None24_NuMUG_5bNone24_NuMUG_5b_r137,287,4985b_S14_L002_R1_001
5b_S14_L002_R2_001
35,841,9165b_S14_L002_R1_001.trim.paired
5b_S14_L002_R2_001.trim.paired
96.12%
None24_NuMUG_5cNone24_NuMUG_5c_r136,894,8705c_S15_L002_R1_001
5c_S15_L002_R2_001
35,394,4295c_S15_L002_R1_001.trim.paired
5c_S15_L002_R2_001.trim.paired
95.93%
None_DMSO_NuMUG_6aNone_DMSO_NuMUG_6a_r132,270,7586a_S16_L002_R1_001
6a_S16_L002_R2_001
30,952,1886a_S16_L002_R1_001.trim.paired
6a_S16_L002_R2_001.trim.paired
95.91%
None_DMSO_NuMUG_6bNone_DMSO_NuMUG_6b_r126,699,0486b_S17_L002_R1_001
6b_S17_L002_R2_001
25,682,6236b_S17_L002_R1_001.trim.paired
6b_S17_L002_R2_001.trim.paired
96.19%
None_DMSO_NuMUG_6cNone_DMSO_NuMUG_6c_r135,816,1636c_S18_L002_R1_001
6c_S18_L002_R2_001
34,403,8466c_S18_L002_R1_001.trim.paired
6c_S18_L002_R2_001.trim.paired
96.06%
IAA24_NuMUG_7aIAA24_NuMUG_7a_r146,021,6747a_S19_L002_R1_001
7a_S19_L002_R2_001
44,165,7267a_S19_L002_R1_001.trim.paired
7a_S19_L002_R2_001.trim.paired
95.97%
IAA24_NuMUG_7bIAA24_NuMUG_7b_r129,285,5387b_S20_L002_R1_001
7b_S20_L002_R2_001
28,155,1617b_S20_L002_R1_001.trim.paired
7b_S20_L002_R2_001.trim.paired
96.14%
IAA24_NuMUG_7cIAA24_NuMUG_7c_r131,814,9557c_S21_L002_R1_001
7c_S21_L002_R2_001
30,897,2257c_S21_L002_R1_001.trim.paired
7c_S21_L002_R2_001.trim.paired
97.12%
dNesp_DMSO_NuMUG_8adNesp_DMSO_NuMUG_8a_r137,184,6468a_S22_L002_R1_001
8a_S22_L002_R2_001
35,792,8898a_S22_L002_R1_001.trim.paired
8a_S22_L002_R2_001.trim.paired
96.26%
dNesp_DMSO_NuMUG_8bdNesp_DMSO_NuMUG_8b_r132,746,2858b_S23_L002_R1_001
8b_S23_L002_R2_001
31,468,2678b_S23_L002_R1_001.trim.paired
8b_S23_L002_R2_001.trim.paired
96.10%
dNesp_DMSO_NuMUG_8cdNesp_DMSO_NuMUG_8c_r134,877,8598c_S24_L002_R1_001
8c_S24_L002_R2_001
33,467,4298c_S24_L002_R1_001.trim.paired
8c_S24_L002_R2_001.trim.paired
95.96%
dNesp_IAA24_NuMUG_9adNesp_IAA24_NuMUG_9a_r132,529,4909a_S25_L002_R1_001
9a_S25_L002_R2_001
31,417,4589a_S25_L002_R1_001.trim.paired
9a_S25_L002_R2_001.trim.paired
96.58%
dNesp_IAA24_NuMUG_9bdNesp_IAA24_NuMUG_9b_r128,107,0939b_S26_L002_R1_001
9b_S26_L002_R2_001
26,998,9859b_S26_L002_R1_001.trim.paired
9b_S26_L002_R2_001.trim.paired
96.06%
dNesp_IAA24_NuMUG_9cdNesp_IAA24_NuMUG_9c_r134,897,4179c_S27_L002_R1_001
9c_S27_L002_R2_001
33,613,3249c_S27_L002_R1_001.trim.paired
9c_S27_L002_R2_001.trim.paired
96.32%
Table 3. Number of reads in input files and links to QC reports.

The following two tables report the number of reads before and after QC in each sample and in each condition.

SampleReads before QCReads after QC% Retained
None0_NuMUG_1a30,635,37529,327,16195.73%
None0_NuMUG_1b33,835,03532,452,76595.91%
None0_NuMUG_1c38,594,38937,089,75096.10%
dNesp_IAA0_NuMUG_2a43,320,49641,246,30695.21%
dNesp_IAA0_NuMUG_2b30,802,95429,543,85395.91%
dNesp_IAA0_NuMUG_2c36,897,25935,504,49296.23%
dNesp_IAA2_NuMUG_3a45,420,82243,656,65796.12%
dNesp_IAA2_NuMUG_3b35,075,16433,656,49295.96%
dNesp_IAA2_NuMUG_3c31,211,01129,974,29496.04%
dNesp_IAA8_NuMUG_4a41,923,32340,287,96996.10%
dNesp_IAA8_NuMUG_4b37,992,45136,527,88496.15%
dNesp_IAA8_NuMUG_4c31,500,16330,088,11095.52%
None24_NuMUG_5a31,525,87730,041,29695.29%
None24_NuMUG_5b37,287,49835,841,91696.12%
None24_NuMUG_5c36,894,87035,394,42995.93%
None_DMSO_NuMUG_6a32,270,75830,952,18895.91%
None_DMSO_NuMUG_6b26,699,04825,682,62396.19%
None_DMSO_NuMUG_6c35,816,16334,403,84696.06%
IAA24_NuMUG_7a46,021,67444,165,72695.97%
IAA24_NuMUG_7b29,285,53828,155,16196.14%
IAA24_NuMUG_7c31,814,95530,897,22597.12%
dNesp_DMSO_NuMUG_8a37,184,64635,792,88996.26%
dNesp_DMSO_NuMUG_8b32,746,28531,468,26796.10%
dNesp_DMSO_NuMUG_8c34,877,85933,467,42995.96%
dNesp_IAA24_NuMUG_9a32,529,49031,417,45896.58%
dNesp_IAA24_NuMUG_9b28,107,09326,998,98596.06%
dNesp_IAA24_NuMUG_9c34,897,41733,613,32496.32%
Table 4. Number of reads in each sample before and after QC.



ConditionReads before QCReads after QC% Retained
None0_NuMUG103,064,79998,869,67695.93%
dNesp_IAA0_NuMUG111,020,709106,294,65195.74%
dNesp_IAA2_NuMUG111,706,997107,287,44396.04%
dNesp_IAA8_NuMUG111,415,937106,903,96395.95%
None24_NuMUG105,708,245101,277,64195.81%
None_DMSO_NuMUG94,785,96991,038,65796.05%
IAA24_NuMUG107,122,167103,218,11296.36%
dNesp_DMSO_NuMUG104,808,790100,728,58596.11%
dNesp_IAA24_NuMUG95,534,00092,029,76796.33%
Table 5. Number of reads in each condition before and after QC.

3. Alignment to transcriptome
The input sequences were aligned to the transcriptome using 2.7.9a. The following table reports the number of alignments to the genome and the transcriptome for each sample. Please note that the number of alignments will in general be higher than the number of reads because the same read may align to multiple isoforms of the same gene. The WIG files can be uploaded to the UCSC Genome Browser as custom tracks.

SampleInput readsGenome alignmentsGenome alignment rateTranscriptome alignmentsTranscriptome alignment rateAlignment report
None0_NuMUG_1a29,327,16157,858,7711.9724,298,33082.85%None0_NuMUG_1a.star/Log.final.out
None0_NuMUG_1b32,452,76564,215,8251.9827,226,08883.89%None0_NuMUG_1b.star/Log.final.out
None0_NuMUG_1c37,089,75073,597,3371.9831,194,09384.10%None0_NuMUG_1c.star/Log.final.out
dNesp_IAA0_NuMUG_2a41,246,30682,779,8452.0135,206,22485.36%dNesp_IAA0_NuMUG_2a.star/Log.final.out
dNesp_IAA0_NuMUG_2b29,543,85359,224,4842.0024,848,88384.11%dNesp_IAA0_NuMUG_2b.star/Log.final.out
dNesp_IAA0_NuMUG_2c35,504,49270,998,8092.0030,373,41485.55%dNesp_IAA0_NuMUG_2c.star/Log.final.out
dNesp_IAA2_NuMUG_3a43,656,65787,214,4362.0037,021,41384.80%dNesp_IAA2_NuMUG_3a.star/Log.final.out
dNesp_IAA2_NuMUG_3b33,656,49266,625,0651.9828,274,55584.01%dNesp_IAA2_NuMUG_3b.star/Log.final.out
dNesp_IAA2_NuMUG_3c29,974,29459,546,5771.9925,321,89984.48%dNesp_IAA2_NuMUG_3c.star/Log.final.out
dNesp_IAA8_NuMUG_4a40,287,96980,123,4241.9933,700,44483.65%dNesp_IAA8_NuMUG_4a.star/Log.final.out
dNesp_IAA8_NuMUG_4b36,527,88473,341,3712.0131,347,19085.82%dNesp_IAA8_NuMUG_4b.star/Log.final.out
dNesp_IAA8_NuMUG_4c30,088,11060,116,8072.0025,696,02285.40%dNesp_IAA8_NuMUG_4c.star/Log.final.out
None24_NuMUG_5a30,041,29660,580,3452.0225,647,84685.38%None24_NuMUG_5a.star/Log.final.out
None24_NuMUG_5b35,841,91672,262,1752.0230,780,23285.88%None24_NuMUG_5b.star/Log.final.out
None24_NuMUG_5c35,394,42971,025,0672.0130,307,77285.63%None24_NuMUG_5c.star/Log.final.out
None_DMSO_NuMUG_6a30,952,18860,998,5411.9725,526,84982.47%None_DMSO_NuMUG_6a.star/Log.final.out
None_DMSO_NuMUG_6b25,682,62351,424,5152.0021,571,99983.99%None_DMSO_NuMUG_6b.star/Log.final.out
None_DMSO_NuMUG_6c34,403,84668,799,7442.0029,203,25784.88%None_DMSO_NuMUG_6c.star/Log.final.out
IAA24_NuMUG_7a44,165,72689,451,3142.0337,523,93784.96%IAA24_NuMUG_7a.star/Log.final.out
IAA24_NuMUG_7b28,155,16155,472,0601.9723,855,83884.73%IAA24_NuMUG_7b.star/Log.final.out
IAA24_NuMUG_7c30,897,22562,718,1792.0326,703,63886.43%IAA24_NuMUG_7c.star/Log.final.out
dNesp_DMSO_NuMUG_8a35,792,88969,224,8761.9329,406,04382.16%dNesp_DMSO_NuMUG_8a.star/Log.final.out
dNesp_DMSO_NuMUG_8b31,468,26762,671,2601.9926,295,87383.56%dNesp_DMSO_NuMUG_8b.star/Log.final.out
dNesp_DMSO_NuMUG_8c33,467,42966,254,1471.9827,912,70983.40%dNesp_DMSO_NuMUG_8c.star/Log.final.out
dNesp_IAA24_NuMUG_9a31,417,45862,995,5172.0126,055,33982.93%dNesp_IAA24_NuMUG_9a.star/Log.final.out
dNesp_IAA24_NuMUG_9b26,998,98553,877,4402.0022,944,79384.98%dNesp_IAA24_NuMUG_9b.star/Log.final.out
dNesp_IAA24_NuMUG_9c33,613,32467,372,5902.0028,629,09885.17%dNesp_IAA24_NuMUG_9c.star/Log.final.out
Table 6. Number of alignments to genome and transcriptome.

4. Genome coverage
The following table reports the overall and effective genome coverage in each sample. The Total nt column reports the total number of nucleotides sequenced, i.e. the number of aligned reads times the length of each read. Coverage is this number divided by the size of the genome. Effective bp reports the number of bases in the genome having coverage greater than 5, and the Effective Perc column shows what percentage this is of the genome size. Note that, especially in the case of RNA-seq, the effective genome size may be much smaller than the full size. Eff Coverage is the average coverage over the effectively covered fraction of the genome.

NameTotal ntCoverageEffective bpEffective PercEff Coverage
None0_NuMUG_1a51,141,521,79318.80501,698,88318.40%101.94
None0_NuMUG_1b56,364,946,03820.71514,651,74618.90%109.52
None0_NuMUG_1c65,601,052,23724.10525,567,57319.30%124.82
dNesp_IAA0_NuMUG_2a75,215,270,78527.63535,363,60419.70%140.49
dNesp_IAA0_NuMUG_2b55,065,876,12320.23502,405,04618.50%109.60
dNesp_IAA0_NuMUG_2c64,996,759,34923.88519,487,60119.10%125.12
dNesp_IAA2_NuMUG_3a80,519,534,19029.57537,228,23219.70%149.88
dNesp_IAA2_NuMUG_3b59,202,825,30421.75511,680,82518.80%115.70
dNesp_IAA2_NuMUG_3c54,617,100,61620.07500,686,62018.40%109.08
dNesp_IAA8_NuMUG_4a74,807,020,43627.49531,770,14119.50%140.68
dNesp_IAA8_NuMUG_4b63,339,360,65423.27521,615,71919.20%121.43
dNesp_IAA8_NuMUG_4c52,683,417,74219.36509,989,37718.70%103.30
None24_NuMUG_5a54,036,042,50919.85529,438,59019.40%102.06
None24_NuMUG_5b60,864,998,09922.35548,330,46220.10%111.00
None24_NuMUG_5c61,256,953,90822.52538,606,30919.80%113.73
None_DMSO_NuMUG_6a54,016,549,50319.84523,977,11319.20%103.09
None_DMSO_NuMUG_6b46,227,797,41216.98508,433,27418.70%90.92
None_DMSO_NuMUG_6c62,983,818,40423.13537,921,13419.80%117.09
IAA24_NuMUG_7a83,713,271,27530.75564,279,05320.70%148.35
IAA24_NuMUG_7b47,202,719,66117.34522,622,30719.20%90.32
IAA24_NuMUG_7c55,103,292,59820.24531,573,84319.50%103.66
dNesp_DMSO_NuMUG_8a60,875,893,45122.36531,952,48719.50%114.44
dNesp_DMSO_NuMUG_8b56,343,512,77620.69522,892,24219.20%107.75
dNesp_DMSO_NuMUG_8c56,887,764,09720.89528,038,37419.40%107.73
dNesp_IAA24_NuMUG_9a60,253,613,39122.14520,101,26419.10%115.85
dNesp_IAA24_NuMUG_9b50,244,595,11818.45516,426,25119.00%97.29
dNesp_IAA24_NuMUG_9c60,673,708,99122.28536,554,39819.70%113.08
Table 7. Genome coverage by sample.

The following table reports the overall and effective genome coverage in each condition.

NameTotal ntCoverageEffective bpEffective PercEff Coverage
None0_NuMUG169,605,001,62562.28601,169,32522.10%282.13
dNesp_IAA0_NuMUG190,900,590,56370.09609,410,40822.40%313.25
dNesp_IAA2_NuMUG189,944,414,06569.74605,818,58622.20%313.53
dNesp_IAA8_NuMUG186,934,202,27068.63613,495,51722.50%304.70
None24_NuMUG173,639,347,67863.75643,026,99823.60%270.03
None_DMSO_NuMUG161,171,246,93559.18617,988,49622.70%260.80
IAA24_NuMUG183,189,545,15867.25641,674,45623.60%285.49
dNesp_DMSO_NuMUG171,405,730,14362.91626,616,77323.00%273.54
dNesp_IAA24_NuMUG168,565,664,80361.87624,236,47222.90%270.03
Table 8. Genome coverage by condition

File: GE6680.sample.cov.xlsx
Size: 85.19 kB
Description: Per-chromosome coverage data, by sample.

File: GE6680.cond.cov.xlsx
Size: 35.00 kB
Description: Per-chromosome coverage data, by condition.

5. Expression analysis - quantification
Gene and transcript expression values were quantified using RSEM v1.3.1. The following files contain the raw FPKM values for all genes/transcripts in all samples. NOTE: these values are not normalized yet, please apply the appropriate normalization before using them in analysis.
File: genes.rawmatrix.csv
Size: 6.78 MB
Description: Matrix of FPKM values for all genes in all samples.

File: transcripts.rawmatrix.csv
Size: 17.07 MB
Description: Matrix of FPKM values for all transcripts in all samples.

File: genes.xpra.txt
Size: 6.13 MB
Description: Counts table suitable for ExpressAnalyst.

The following scatterplots show the level of similarity between replicates of the same condition.


Principal Component Analysis on raw (un-normalized) expression data. Click on the thumbnail to display the full-size image.

(png format, 370.12 kB)


The following image displays the Multi-Dimensional Scaling (MDS) plot for the raw (un-normalized) expression data. Click on the thumbnail to display the full-size image.
6. Differential expression - protein-coding genes
Differential gene expression was analyzed using DESeq2. The following table reports the number of differentially expressed genes in each contrast with abs(log2(FC)) >= 0.58 and FDR-corrected P-value <= 0.05. The files under the Table heading contain the log2(FC) and P-value of all significant genes, while the files under the Expressions heading contain normalized expression values for the significant genes in all replicates of the two conditions being compared. The lists of differentially expressed genes for all contrasts can also be downloaded as a single Excel file using the link below.

TestControlTotalOverexpressedUnderexpressedTableExpressions
dNesp_IAA0_NuMUGIAA24_NuMUG3,8801,8012,079dNesp_IAA0_NuMUG.vs.IAA24_NuMUG.codinggeneDiff.csvdNesp_IAA0_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_IAA2_NuMUGIAA24_NuMUG3,7451,6952,050dNesp_IAA2_NuMUG.vs.IAA24_NuMUG.codinggeneDiff.csvdNesp_IAA2_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_IAA8_NuMUGIAA24_NuMUG3,4321,5321,900dNesp_IAA8_NuMUG.vs.IAA24_NuMUG.codinggeneDiff.csvdNesp_IAA8_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGIAA24_NuMUG814394420dNesp_IAA24_NuMUG.vs.IAA24_NuMUG.codinggeneDiff.csvdNesp_IAA24_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_DMSO_NuMUGdNesp_IAA0_NuMUG2,4141,3831,031dNesp_DMSO_NuMUG.vs.dNesp_IAA0_NuMUG.codinggeneDiff.csvdNesp_DMSO_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
None0_NuMUGdNesp_DMSO_NuMUG2,2669571,309None0_NuMUG.vs.dNesp_DMSO_NuMUG.codinggeneDiff.csvNone0_NuMUG.vs.dNesp_DMSO_NuMUG.gmatrix.csv
None0_NuMUGdNesp_IAA0_NuMUG626358268None0_NuMUG.vs.dNesp_IAA0_NuMUG.codinggeneDiff.csvNone0_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGdNesp_DMSO_NuMUG211dNesp_IAA24_NuMUG.vs.dNesp_DMSO_NuMUG.codinggeneDiff.csvdNesp_IAA24_NuMUG.vs.dNesp_DMSO_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGNone0_NuMUG2,3881,3641,024dNesp_IAA24_NuMUG.vs.None0_NuMUG.codinggeneDiff.csvdNesp_IAA24_NuMUG.vs.None0_NuMUG.gmatrix.csv
dNesp_IAA2_NuMUGdNesp_IAA0_NuMUG612041dNesp_IAA2_NuMUG.vs.dNesp_IAA0_NuMUG.codinggeneDiff.csvdNesp_IAA2_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
dNesp_IAA8_NuMUGdNesp_IAA0_NuMUG17053117dNesp_IAA8_NuMUG.vs.dNesp_IAA0_NuMUG.codinggeneDiff.csvdNesp_IAA8_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGdNesp_IAA0_NuMUG2,5501,4331,117dNesp_IAA24_NuMUG.vs.dNesp_IAA0_NuMUG.codinggeneDiff.csvdNesp_IAA24_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
Table 9. Results of gene-level differential expression analysis.

File: GE6680-codingdiff.xlsx
Size: 1.56 MB
Description: Excel file containing differentially expressed genes for all contrasts (one sheet per contrast). Only includes protein-coding genes.

File: GE6680-allcodingdiff.xlsx
Size: 9.74 MB
Description: Excel file containing differential expression values for all tested genes in all contrasts (one sheet per contrast). Only includes protein-coding genes. Note: genes with very low average expression in all conditions were removed.

File: GE6680.g.deseq2norm.xlsx
Size: 5.12 MB
Description: Excel file containing normalized (DESeq2) expression values for all protein-coding genes in all conditions. Note: genes with very low average expression in all conditions were removed.


Principal Component Analysis on normalized expression data. Click on the thumbnail to display the full-size image.

(png format, 372.09 kB)


The following image displays the Multi-Dimensional Scaling (MDS) plot for the normalized expression data. In this plot, relative distances between samples reflect the similarity of their gene expression profiles. Ideally, replicates of the same condition should be close together, and well separated from other conditions.

Volcano plots for all contrasts. Use the menu to select a contrast.

7. Differential expression - all genes
The following table reports results from the same differential analysis as above, but includes all biotypes instead of coding genes only.

TestControlTotalOverexpressedUnderexpressedTableExpressions
dNesp_IAA0_NuMUGIAA24_NuMUG4,2191,9482,271dNesp_IAA0_NuMUG.vs.IAA24_NuMUG.geneDiff.csvdNesp_IAA0_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_IAA2_NuMUGIAA24_NuMUG4,1141,8502,264dNesp_IAA2_NuMUG.vs.IAA24_NuMUG.geneDiff.csvdNesp_IAA2_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_IAA8_NuMUGIAA24_NuMUG3,7981,7012,097dNesp_IAA8_NuMUG.vs.IAA24_NuMUG.geneDiff.csvdNesp_IAA8_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGIAA24_NuMUG873417456dNesp_IAA24_NuMUG.vs.IAA24_NuMUG.geneDiff.csvdNesp_IAA24_NuMUG.vs.IAA24_NuMUG.gmatrix.csv
dNesp_DMSO_NuMUGdNesp_IAA0_NuMUG2,6331,5201,113dNesp_DMSO_NuMUG.vs.dNesp_IAA0_NuMUG.geneDiff.csvdNesp_DMSO_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
None0_NuMUGdNesp_DMSO_NuMUG2,5001,0401,460None0_NuMUG.vs.dNesp_DMSO_NuMUG.geneDiff.csvNone0_NuMUG.vs.dNesp_DMSO_NuMUG.gmatrix.csv
None0_NuMUGdNesp_IAA0_NuMUG651366285None0_NuMUG.vs.dNesp_IAA0_NuMUG.geneDiff.csvNone0_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGdNesp_DMSO_NuMUG312dNesp_IAA24_NuMUG.vs.dNesp_DMSO_NuMUG.geneDiff.csvdNesp_IAA24_NuMUG.vs.dNesp_DMSO_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGNone0_NuMUG2,6391,5091,130dNesp_IAA24_NuMUG.vs.None0_NuMUG.geneDiff.csvdNesp_IAA24_NuMUG.vs.None0_NuMUG.gmatrix.csv
dNesp_IAA2_NuMUGdNesp_IAA0_NuMUG732548dNesp_IAA2_NuMUG.vs.dNesp_IAA0_NuMUG.geneDiff.csvdNesp_IAA2_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
dNesp_IAA8_NuMUGdNesp_IAA0_NuMUG20772135dNesp_IAA8_NuMUG.vs.dNesp_IAA0_NuMUG.geneDiff.csvdNesp_IAA8_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
dNesp_IAA24_NuMUGdNesp_IAA0_NuMUG2,7941,5561,238dNesp_IAA24_NuMUG.vs.dNesp_IAA0_NuMUG.geneDiff.csvdNesp_IAA24_NuMUG.vs.dNesp_IAA0_NuMUG.gmatrix.csv
Table 10. Results of gene-level differential expression analysis (all biotypes).

File: GE6680-genediff.xlsx
Size: 1.72 MB
Description: Excel file containing differentially expressed genes for all contrasts (one sheet per contrast). Includes all genes and pseudo-genes.

File: GE6680-allgenediff.xlsx
Size: 11.13 MB
Description: Excel file containing differential expression values for all genes in all contrasts (one sheet per contrast). Includes all genes and pseudo-genes.

File: GE6680-allExpressions.xlsx
Size: 4.39 MB
Description: Excel file containing normalized (RSEM) expression values for all genes in all conditions.

8. Differential expression - isoform level
The following table reports the number of differentially expressed isoforms in each contrast with abs(log2(FC)) >= 0.58 and FDR-corrected P-value <= 0.05. The lists of differentially expressed isoforms for all contrasts can also be downloaded as a single Excel file using the link below.

TestControlTot isoformsOverexpressedUnderexpressedTableExpressions
dNesp_IAA0_NuMUGIAA24_NuMUG000dNesp_IAA0_NuMUG.vs.IAA24_NuMUG.isoDiff.csvdNesp_IAA0_NuMUG.vs.IAA24_NuMUG.imatrix.csv
dNesp_IAA2_NuMUGIAA24_NuMUG000dNesp_IAA2_NuMUG.vs.IAA24_NuMUG.isoDiff.csvdNesp_IAA2_NuMUG.vs.IAA24_NuMUG.imatrix.csv
dNesp_IAA8_NuMUGIAA24_NuMUG000dNesp_IAA8_NuMUG.vs.IAA24_NuMUG.isoDiff.csvdNesp_IAA8_NuMUG.vs.IAA24_NuMUG.imatrix.csv
dNesp_IAA24_NuMUGIAA24_NuMUG000dNesp_IAA24_NuMUG.vs.IAA24_NuMUG.isoDiff.csvdNesp_IAA24_NuMUG.vs.IAA24_NuMUG.imatrix.csv
dNesp_DMSO_NuMUGdNesp_IAA0_NuMUG000dNesp_DMSO_NuMUG.vs.dNesp_IAA0_NuMUG.isoDiff.csvdNesp_DMSO_NuMUG.vs.dNesp_IAA0_NuMUG.imatrix.csv
None0_NuMUGdNesp_DMSO_NuMUG000None0_NuMUG.vs.dNesp_DMSO_NuMUG.isoDiff.csvNone0_NuMUG.vs.dNesp_DMSO_NuMUG.imatrix.csv
None0_NuMUGdNesp_IAA0_NuMUG000None0_NuMUG.vs.dNesp_IAA0_NuMUG.isoDiff.csvNone0_NuMUG.vs.dNesp_IAA0_NuMUG.imatrix.csv
dNesp_IAA24_NuMUGdNesp_DMSO_NuMUG000dNesp_IAA24_NuMUG.vs.dNesp_DMSO_NuMUG.isoDiff.csvdNesp_IAA24_NuMUG.vs.dNesp_DMSO_NuMUG.imatrix.csv
dNesp_IAA24_NuMUGNone0_NuMUG000dNesp_IAA24_NuMUG.vs.None0_NuMUG.isoDiff.csvdNesp_IAA24_NuMUG.vs.None0_NuMUG.imatrix.csv
dNesp_IAA2_NuMUGdNesp_IAA0_NuMUG000dNesp_IAA2_NuMUG.vs.dNesp_IAA0_NuMUG.isoDiff.csvdNesp_IAA2_NuMUG.vs.dNesp_IAA0_NuMUG.imatrix.csv
dNesp_IAA8_NuMUGdNesp_IAA0_NuMUG000dNesp_IAA8_NuMUG.vs.dNesp_IAA0_NuMUG.isoDiff.csvdNesp_IAA8_NuMUG.vs.dNesp_IAA0_NuMUG.imatrix.csv
dNesp_IAA24_NuMUGdNesp_IAA0_NuMUG000dNesp_IAA24_NuMUG.vs.dNesp_IAA0_NuMUG.isoDiff.csvdNesp_IAA24_NuMUG.vs.dNesp_IAA0_NuMUG.imatrix.csv
Table 11. Results of isoform-level differential expression analysis.

File: GE6680-isodiff.xlsx
Size: 11.28 kB
Description: Excel file containing differentially expressed isoforms for all contrasts (one sheet per contrast).

File: GE6680-allisodiff.xlsx
Size: 11.13 MB
Description: Excel file containing differential expression values for all isoforms in all contrasts (one sheet per contrast).

9. Differential expression - combined files
The following file contains merged differential expression data. The first sheet contains fold changes for all genes that were found to be differentially expressed in at least one contrast. The second and third sheets contain the same information for coding genes only, and all transcripts.
File: GE6680-merged.allDiff.xlsx
Size: 1.46 MB
Description: Merged fold changes for all differentially expressed genes, coding genes, and transcripts respectively.

10. Alternative splicing analysis
Alternative splicing analysis was performed using rMATS version v4.1.0. The following table reports the number of events in each class for each contrast. The link in the last column allows you to download an Excel file containing full results.

TestControlSERIMXEA3SSA5SSFull
dNesp_IAA0_NuMUGIAA24_NuMUG19078335837dNesp_IAA0_NuMUG.vs.IAA24_NuMUG.MATS.xlsx
dNesp_IAA2_NuMUGIAA24_NuMUG19484374533dNesp_IAA2_NuMUG.vs.IAA24_NuMUG.MATS.xlsx
dNesp_IAA8_NuMUGIAA24_NuMUG15989294931dNesp_IAA8_NuMUG.vs.IAA24_NuMUG.MATS.xlsx
dNesp_IAA24_NuMUGIAA24_NuMUG14769294729dNesp_IAA24_NuMUG.vs.IAA24_NuMUG.MATS.xlsx
dNesp_DMSO_NuMUGdNesp_IAA0_NuMUG15879355338dNesp_DMSO_NuMUG.vs.dNesp_IAA0_NuMUG.MATS.xlsx
None0_NuMUGdNesp_DMSO_NuMUG17695364430None0_NuMUG.vs.dNesp_DMSO_NuMUG.MATS.xlsx
None0_NuMUGdNesp_IAA0_NuMUG15658285227None0_NuMUG.vs.dNesp_IAA0_NuMUG.MATS.xlsx
dNesp_IAA24_NuMUGdNesp_DMSO_NuMUG17252363931dNesp_IAA24_NuMUG.vs.dNesp_DMSO_NuMUG.MATS.xlsx
dNesp_IAA24_NuMUGNone0_NuMUG17376394233dNesp_IAA24_NuMUG.vs.None0_NuMUG.MATS.xlsx
dNesp_IAA2_NuMUGdNesp_IAA0_NuMUG14759275334dNesp_IAA2_NuMUG.vs.dNesp_IAA0_NuMUG.MATS.xlsx
dNesp_IAA8_NuMUGdNesp_IAA0_NuMUG14761325330dNesp_IAA8_NuMUG.vs.dNesp_IAA0_NuMUG.MATS.xlsx
dNesp_IAA24_NuMUGdNesp_IAA0_NuMUG18175355034dNesp_IAA24_NuMUG.vs.dNesp_IAA0_NuMUG.MATS.xlsx
Table 12. Number of alternative splicing events, by class, for each contrast. Classes are: SE=exon skipping; RI=intron retention; MXE=mutually exclusive exons; A3SS=alternative 3' splice site; A5SS=alternative 5' splice site.

11. MultiQC report
MultiQC is a general Quality Control tool for a large number of bioinformatics pipelines. The report on this analysis (generated using MultiQC version 1.12) is available here:

MultiQC report
12. UCSC hub

UCSC Genome Browser: use the previous link to display the data tracks automatically, or copy the the URL https://bw:bw@data.rc.ufl.edu/secure/icbr/LLC//GE6680/hub/hub.txt and paste it into the "My Hubs" form in this page.

WashU EpiGenome Browser: use the previous link to display the data tracks automatically, or copy the following URL into the "Datahub by URL Link" field: https://bw:bw@data.rc.ufl.edu/secure/icbr/LLC//GE6680/hub/hub.json.

13. Methods summary

Short reads were trimmed using trimmomatic (v 0.36) [1], and QC on the original and trimmed reads was performed using FastQC (v 0.11.4) [2] and MultiQC [3].

The reads were aligned to the transcriptome using STAR version 2.7.9a [4].

Transcript abundance was quantified using RSEM (RSEM v1.3.1) [5].

Differential expression analysis was performed using DESeq2 [6], with an FDR-corrected P-value threshold of 0.05. The output files were further filtered to extract transcripts showing a 1.5-fold change in either direction. Results were reported for protein-coding genes only, and for all transcript types.

Alternative splicing analysis was performed using rMATS version v4.1.0 [7].


References

  1. Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.
  2. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  3. Philip Ewels, Mans Magnusson, Sverker Lundin and Max Kaller (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics | doi: 10.1093/bioinformatics/btw354 | PubMed: 27312411
  4. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29(1):15-21 | doi: 10.1093/bioinformatics/bts635
  5. Li B and Dewey CN (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 | doi: 10.1186/1471-2105-12-323
  6. Love MI, huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15,550 (2014). | doi: 10.1186/s13059-014-0550-8
  7. Shen S., Park JW., Lu ZX., Lin L., Henry MD., Wu YN., Zhou Q., Xing Y. rMATS: Robust and Flexible Detection of Differential Alternative Splicing from Replicate RNA-Seq Data. PNAS, 111(51):E5593-601 | doi: 10.1073/pnas.1419161111



Completed: 6-12-2023@12:11
© 2023, A. Riva, University of Florida.